Section 1-5, Mathematics 108

Solving Equations

Linear Equations

$$
\begin{aligned}
& 4 x+7=19 \\
& 4 x+7-7=19-7 \\
& 4 x=12 \\
& 4 x \cdot \frac{1}{4}=12 \cdot \frac{1}{4} \\
& x=3
\end{aligned}
$$

Quadratic Equations

1) Try Factoring
2) Completing the square?

Recall that
$A^{2} \pm 2 A B+B^{2}=(A \pm B)^{2}$
That means that an equation
$a x^{2}+b x+c=0$
We can create a perfect square from the first two terms by making the third term $\left(\frac{b}{2 a}\right)^{2}$

Example:
$x^{2}-8 x+13=0$

We find $\left(\frac{8}{2 \cdot 1}\right)^{2}=4^{2}=16$
$x^{2}-8 x+16+13=16$
$(x-4)^{2}+13=16$
$(x-4)^{2}=3$
$x-4= \pm \sqrt{3}$
$x=4 \pm \sqrt{3}$
$x=4+\sqrt{3}, 4-\sqrt{3}$

Quadratic Formula

We can apply this procedure to the general equation and get the quadratic formula
$a x^{2}+b x+c=0$
$x^{2}+\frac{b}{a} x+\frac{c}{a}=0$
$x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}+\frac{c}{a}=\left(\frac{b}{2 a}\right)^{2}$
$\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}=\left(\frac{b}{2 a}\right)^{2}$
$\left(x+\frac{b}{2 a}\right)^{2}=\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}$
$x+\frac{b}{2 a}= \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}$
$x=-\frac{b}{2 a} \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Note the discriminant $b^{2}-4 a c$ tells us about the roots or zeros.
$b^{2}-4 a c=0 \quad 1 \quad$ solution
$b^{2}-4 a c>0 \quad 2$ solutions
$b^{2}-4 a c<0 \quad 0 \quad$ solutions

Equations with radicals (can be tricky)

Example:
$2 x=1-\sqrt{2-x}$
First step, get rid of the radical by squaring
$2 x=1-\sqrt{2-x}$
$\sqrt{2-x}=1-2 x$
$2-x=(1-2 x)^{2}$
$2-x=1-4 x+4 x^{2}$
$4 x^{2}-3 x-1=0$
Using the quadratic formula
$x=\frac{3 \pm \sqrt{9+16}}{8}=\frac{3 \pm \sqrt{25}}{8}=\frac{3 \pm 5}{8}=1,-\frac{1}{4}$
However squaring can introduce "phantom" roots, so we need to plug these roots back in to check.
$2(1)=1-\sqrt{2-1}$
$2=1-\sqrt{1}$
$2=0$
So 1 is a phantom root, not a solution.
$2\left(\frac{-1}{4}\right)=1-\sqrt{2-\frac{-1}{4}}$
$-\frac{1}{2}=1-\sqrt{\frac{9}{4}}=1-\frac{3}{2}=-\frac{1}{2}$
So $-\frac{1}{4}$ is a solution.

Simple Higher Degree Equations

Sometimes a $3^{\text {rd }}$ or $4^{\text {th }}$ degree polynomial equation is really a quadratic in disguise.
Example:
$x^{4}-8 x^{2}+8=0$

In this equation let $y=x^{2}$ so
$y^{2}-8 y^{2}+8=0$
$y=\frac{8 \pm \sqrt{64-32}}{2}=4 \pm 2 \sqrt{2}$
$x= \pm \sqrt{4 \pm 2 \sqrt{2}}$
Using all 4 combinations of + an - you get 4 distinct roots or solutions.

Fractional Powers

Example:
$x^{1 / 3}+x^{1 / 6}-2=0$
Let $y=x^{1 / 6}$
$y^{2}+y-2=0$
$y=\frac{-1 \pm \sqrt{1+8}}{2}=\frac{-1 \pm 3}{2}=1,-2$
$y^{3}=x$
$x=1,-8$

Checking the roots we find that 1 is a solution, but -8 is a phantom.

Absolute Value Equations

When you have an absolute value in an equation you really have two different equations. Split it up and solve each individually

Example:

Try them both out

$$
\begin{array}{ll}
|2 \cdot 4-5|=3 & |2 \cdot 1-5|=3 \\
|3|=3 & |-3|=3 \\
3=3 & 3=3
\end{array}
$$

Supplemental (You don't need to know this)

Since there is a quadratic formula, is there a similar solution for polynomial equations of the third degree, a cubic equation?

Yes!
Niccolò Fontana Tartaglia, an Italian mathematician who lived from 1499-1557 came up with this formula.

Given the equation $a x^{3}+b x^{2}+c x+d=0$

$$
\begin{aligned}
x & =\sqrt[3]{\left(\frac{-b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)+\sqrt{\left(\frac{-b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)^{2}+\left(\frac{c}{3 a}-\frac{b^{2}}{9 a^{2}}\right)^{3}}} \\
& +\sqrt[3]{\left(\frac{-b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)-\sqrt{\left(\frac{-b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)^{2}+\left(\frac{c}{3 a}-\frac{b^{2}}{9 a^{2}}\right)^{3}}} \\
& -\frac{b}{3 a}
\end{aligned}
$$

Similarly there is a quartic formula discovered by Lodovico Ferrari in 1540.
The search for a formulaic solution to the general 5th degree equation went on for almost 300 years until Niels Henrik Abel, a Norwegian mathematican showed in 1820 that no such formula could exist.

The search for this formula served to develop what is known today as the subject "Modern Algebra", a course you might take as an undergraduate mathematics major after Calculus and Linear Algebra.

